Community Detection Based on Genetic Algorithm Using Local Structural Similarity
نویسندگان
چکیده
منابع مشابه
Hierarchical Community Detection Algorithm based on Local Similarity
Although community, one of the general characteristics of complex networks, has obvious hierarchical structure, in-depth research on its application in the current community detection algorithms is limited. In this paper we present a novel hierarchical community detection algorithm which starts from the node similarity calculation based on local adjacency in networks. Then we find the initial c...
متن کاملSTRUCTURAL OPTIMIZATION USING A MUTATION-BASED GENETIC ALGORITHM
The present study is an attempt to propose a mutation-based real-coded genetic algorithm (MBRCGA) for sizing and layout optimization of planar and spatial truss structures. The Gaussian mutation operator is used to create the reproduction operators. An adaptive tournament selection mechanism in combination with adaptive Gaussian mutation operators are proposed to achieve an effective search in ...
متن کاملPedestrian Detection Algorithm Based on Local Color Parallel Similarity Features
HOG Feature is the mainstream feature applied in the field of pedestrian detection .HOG combined with CSS has good effects on pedestrian detection. Because of the large amount calculation of HOG and CSS, HOG and CSS has poor real-time performance, we propose LCSSF (Local Color Self Similarity Feature) avoiding calculating the global color similarity distribution of CSS. The tested results of th...
متن کاملCommunity Detection Algorithm Based on Local Expansion K-means
Community structure implies some features in various real-world networks, and these features can help us to analysis structural and functional properties in the complex system. It has been proved that the classic k-means algorithm can efficiently cluster nodes into communities. However, initial seeds decide the efficiency of the k-means, especially when detecting communities with different size...
متن کاملImproving Spam Detection Based on Structural Similarity
We propose a new spam detection algorithm that uses structural relationships between senders and recipients of email as the basis for spam detection. A unifying representation of users and receivers in the vectorial space of their contacts is constructed, that leads to a natural definition of similarity between them. This similarity is then used to group email senders and recipients into cluste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2939864